
Programming Languages Spring 2021 Qual Exam

1. 10pts. Give a regular expression for each of the following languages over
the decimal digits {0,1,…,9}

a. All 5-digit strings.
b. All strings that begin with 9 and are multiples of 5.
c. All strings that begin with 9 and contain at least one sequence of

three or more consecutive 1's.

A) [0-9] [0-9] [0-9] [0-9] [0-9]
B) 9[0-9]*[05]
C) 9[0-9]*111[0-9]*

2. 10 pts. Define ambiguous as it applies to Grammars. Demonstrate that the
following grammar is ambiguous.
 E -> E or E | E and E | not E | (E) | x

 Ambiguous. A sentence has two different parses from the Grammar.

Consider x or x and x

E -> E or E -> E or E and E ->.. x or x and x

Vs

E -> E and E -> E or E and E ->* x or x and X

The first step uses a different expandsion yet same result. Ambiguous

3. 10pts Using a functional language (like LISP, Haskell), write a function (or

set of functions) which returns a list where all duplicates are removed from

the original list. You may NOT use built in methods which perform unique

directly. You may use built in methods like “member()”. For example, if

the list contains 1, 1, 2, 3 and 2, then the resulting list should contain 1, 2,

and 3.

(define uniq (f x)

 (cond ((null? x) x)

 ((member (car x) (cdrx)) (uniq (cdr x))

 (t (cons (car x) (uniq (cdr x)))))

4. 10pts What are the final values of i, j, k, and *p after executing the

following C program segment?

int i = 10, j = 20, k = 30;
int *p;
p = &k;
*p = *p + 3;
p = &j;
*p = 0;
p = &i;

*p = *p - 3

i=7

j= 0

k= 33

*p =7

5. 15pts In the following Java method, identify all examples of static memory
allocation, stack memory allocation, and heap memory allocation (use the
line numbers). Be very clear about what is where and if the allocation is
explicit or implicit.

1 public int f() {
2 Stack<String> s = new Stack<String>();
3 String x;
4 Integer y;
5 x = "This is a string";
6 y = 1192;
7 }

Line 2 s is on stack, “new Stack()” is on heap (explicit)

Line 3 x is on stack

Line 4 y is on stack

Line 5 x remains on stack, points to object String (“This is a string”)

on heap, implicit

Line 6 y remains on stack, points to auto-box Integer on heap,

implicit

6. 10pts Explain thoroughly why objects are allocated memory from the heap

and not from the stack. Discuss the challenges of objects being allocated

on the heap.

The main reason why we allocate objects on the heap than on the stack is

that stack elements are FIFO, they exist until the method/function

activation record is removed. At this point, we would have a reference to

memory which could be overwritten the next time an activation record

occurs. The heap allocates memory until there are no references to it.

This can be problematic is a heap object creates a circular reference chain

and a garbage collection routine cannot identify that the object is not

externally referenced.

7. 15pts Implement a recursive function common_prefix in your preferred
programming language. which takes two lists and returns the longest list
that is a prefix of both argument lists. It should use the built-in = function to
compare elements. None recursive solutions will not receive any points.
Identify the language you have used for implementation. The following are
some example calls:

common_prefix([3, 4, 5], [3, 4, 6, 7]) -> [3, 4]
common_prefix([3, 4, 5], [3, 4]) -> [3, 4]
common_prefix([5, 3, 4], [3, 4, 5, 6, 7]) -> []

 In C

 struct node {int data; struct node * next;}

 struct node * common_prefix(struct node * L1, struct node *L2)

 { strunct node *T;

 if (L1== NULL || L2 == NULL) return NULL;

 If (L1->data != L2 -> data) return NULL;

 T= (struct node *) (malloc (sizeof (struct node));

 T->data = L1->data;

 T->next = common_prefix(L1->next, L2->next);

 Return T;

 }

8. 10pts What is “ad hoc scoping”. In what context is “ad hoc scoping” used?

Give an example. Why is “ad hoc scoping” important to programming

language environments?

 “ad hoc” scoping occurs when a function (F) is passed to another function as a

parameter. The called function can then pass that function (F) to other

functions. Whenever the sent function F is activated, is uses the variables and

environment that was in existence when F was first passed as a parameter. This

sort of environment allows a subroutine to construct an accessor method to its

environment without having to expose its variables globally. It is akin to having

a helper function for those who need to know internal information to a method.

9. 10pts Parameter passing

Consider the following C code:

int i = 1;
void foo(int f, int g) {
 g = 0;
 f = f + i + 1;
}
int main() {
 int a[] = {1, 1, 1, 1 };
 foo(a[i+1], i);
 printf("%d %d %d %d %d \n", i, a[0], a[1], a[2], a[3]);
}

a. Give the output if C uses call-by-value
b. Give the output if C uses call-by-reference
c. Give the output if C uses call-by-name

A) 1,1,1,1,1

B) 0, 1,1,2,1

C) 0,1,2,1,1

